Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.346
1.
Oncotarget ; 15: 288-300, 2024 May 07.
Article En | MEDLINE | ID: mdl-38712741

PURPOSE: Sequential PET/CT studies oncology patients can undergo during their treatment follow-up course is limited by radiation dosage. We propose an artificial intelligence (AI) tool to produce attenuation-corrected PET (AC-PET) images from non-attenuation-corrected PET (NAC-PET) images to reduce need for low-dose CT scans. METHODS: A deep learning algorithm based on 2D Pix-2-Pix generative adversarial network (GAN) architecture was developed from paired AC-PET and NAC-PET images. 18F-DCFPyL PSMA PET-CT studies from 302 prostate cancer patients, split into training, validation, and testing cohorts (n = 183, 60, 59, respectively). Models were trained with two normalization strategies: Standard Uptake Value (SUV)-based and SUV-Nyul-based. Scan-level performance was evaluated by normalized mean square error (NMSE), mean absolute error (MAE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). Lesion-level analysis was performed in regions-of-interest prospectively from nuclear medicine physicians. SUV metrics were evaluated using intraclass correlation coefficient (ICC), repeatability coefficient (RC), and linear mixed-effects modeling. RESULTS: Median NMSE, MAE, SSIM, and PSNR were 13.26%, 3.59%, 0.891, and 26.82, respectively, in the independent test cohort. ICC for SUVmax and SUVmean were 0.88 and 0.89, which indicated a high correlation between original and AI-generated quantitative imaging markers. Lesion location, density (Hounsfield units), and lesion uptake were all shown to impact relative error in generated SUV metrics (all p < 0.05). CONCLUSION: The Pix-2-Pix GAN model for generating AC-PET demonstrates SUV metrics that highly correlate with original images. AI-generated PET images show clinical potential for reducing the need for CT scans for attenuation correction while preserving quantitative markers and image quality.


Deep Learning , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Humans , Positron Emission Tomography Computed Tomography/methods , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Aged , Middle Aged , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Image Processing, Computer-Assisted/methods , Algorithms , Radiopharmaceuticals , Reproducibility of Results
2.
Theranostics ; 14(6): 2560-2572, 2024.
Article En | MEDLINE | ID: mdl-38646643

Management of prostate cancer (PC) might be improved by combining external beam radiotherapy (EBRT) and prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) with lutetium-177 (177Lu)-labeled PSMA inhibitors. We hypothesized a higher efficacy of the combination due to augmentation of the radiation dose to the tumor and interactions of EBRT with PSMA expression potentially increasing radiopharmaceutical uptake. Therefore, this study analyzed the influence of radiation on PSMA expression levels in vitro. The results were translated to evaluate the efficacy of the combination of photon EBRT and [177Lu]Lu-PSMA-617 in a murine PC xenograft model. Finally, a clinical case report on a combined elective field EBRT with RLT dose escalation illustrates a proof-of-concept. Methods: PSMA gene and protein expression were assessed in human PSMA-overexpressing LNCaP cells after irradiation using reverse transcription quantitative polymerase chain reaction (RT-qPCR), flow cytometry and On-Cell Western assays. In the in vivo therapy study, LNCaP tumor-bearing BALB/c nu/nu mice were irradiated once with 2 Gy X-ray EBRT and injected with 40 MBq [177Lu]Lu-PSMA-617 after 4 h or received single or no treatment (n = 10 each). Tumor-absorbed doses by [177Lu]Lu-PSMA-617 were calculated according to the Medical Internal Radiation Dosimetry (MIRD) formalism after deriving time-activity curves using a gamma probe. An exemplified patient case is demonstrated where fractionated EBRT (54 Gy to prostate; 45 Gy to pelvic lymphatics) and three cycles of [177Lu]Lu-PSMA-617 (3.4-6.0 GBq per cycle) were sequentially combined under concurrent androgen deprivation for treating locally advanced PC. Results: At 4 h following irradiation with 2-8 Gy, LNCaP cells displayed a PSMA protein upregulation by around 18% relative to non-irradiated cells, and a stronger upregulation on mRNA level (up to 2.6-fold). This effect was reversed by 24 h when PSMA protein levels were downregulated by up to 22%. Mice treated with the combination therapy showed significantly improved outcomes regarding tumor control and median survival (p < 0.0001) as compared to single or no treatment. Relative to monotherapy with PSMA-RLT or EBRT, the tumor doubling time was prolonged 1.7- or 2.7-fold and the median survival was extended by 24% or 60% with the combination, respectively. Additionally, tumors treated with EBRT exhibited a 14% higher uptake of the radiopharmaceutical as evident from the calculated tumor-absorbed dose, albeit with high variability in the data. Concerning the patient case, the tri-modality treatment was well tolerated and the patient responded with a long-lasting complete biochemical remission for five years following end of PSMA-RLT. The patient then developed a biochemical relapse with oligo-recurrent disease on follow-up imaging. Conclusion: The present preclinical and clinical data demonstrate that the combination of EBRT with dose escalation by PSMA-RLT improves tumor control and potentially prolongs survival. This may pave the way for further clinical investigations of this approach to explore the curative potential of the combination therapy.


Dipeptides , Heterocyclic Compounds, 1-Ring , Lutetium , Prostate-Specific Antigen , Prostatic Neoplasms , Radioisotopes , Radiopharmaceuticals , Animals , Male , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/metabolism , Humans , Lutetium/therapeutic use , Lutetium/pharmacology , Heterocyclic Compounds, 1-Ring/therapeutic use , Heterocyclic Compounds, 1-Ring/pharmacology , Dipeptides/pharmacology , Dipeptides/therapeutic use , Cell Line, Tumor , Mice , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/pharmacology , Radiopharmaceuticals/pharmacokinetics , Radioisotopes/therapeutic use , Radioisotopes/pharmacology , Mice, Inbred BALB C , Mice, Nude , Glutamate Carboxypeptidase II/metabolism , Glutamate Carboxypeptidase II/genetics , Xenograft Model Antitumor Assays , Antigens, Surface/metabolism , Antigens, Surface/genetics
4.
Phys Med ; 121: 103366, 2024 May.
Article En | MEDLINE | ID: mdl-38657425

The purpose of this investigation is to quantify the spatial heterogeneity of prostate-specific membrane antigen (PSMA) positron emission tomography (PET) uptake within parotid glands. We aim to quantify patterns in well-defined regions to facilitate further investigations. Furthermore, we investigate whether uptake is correlated with computed tomography (CT) texture features. METHODS: Parotid glands from [18F]DCFPyL PSMA PET/CT images of 30 prostate cancer patients were analyzed. Uptake patterns were assessed with various segmentation schemes. Spearman's rank correlation coefficient was calculated between PSMA PET uptake and feature values of a Grey Level Run Length Matrix using a long and short run length emphasis (GLRLML and GLRLMS) in subregions of the parotid gland. RESULTS: PSMA PET uptake was significantly higher (p < 0.001) in lateral/posterior regions of the glands than anterior/medial regions. Maximum uptake was found in the lateral half of parotid glands in 50 out of 60 glands. The difference in SUVmean between parotid halves is greatest when parotids are divided by a plane separating the anterior/medial and posterior/lateral halves symmetrically (out of 120 bisections tested). PSMA PET uptake was significantly correlated with CT GLRLML (p < 0.001), and anti-correlated with CT GLRLMS (p < 0.001). CONCLUSION: Uptake of PSMA PET is heterogeneous within parotid glands, with uptake biased towards lateral/posterior regions. Uptake within parotid glands was strongly correlated with CT texture feature maps.


Glutamate Carboxypeptidase II , Lysine/analogs & derivatives , Parotid Gland , Positron Emission Tomography Computed Tomography , Urea/analogs & derivatives , Humans , Parotid Gland/diagnostic imaging , Parotid Gland/metabolism , Glutamate Carboxypeptidase II/metabolism , Male , Ligands , Antigens, Surface/metabolism , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Biological Transport , Aged , Middle Aged
5.
Clin Nucl Med ; 49(6): e286-e287, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38598513

ABSTRACT: The occurrence of cutaneous metastases in prostate cancer is exceedingly rare. Many benign lesions and nonprostatic cancers can express the prostate-specific membrane antigen (PSMA). They can potentially mimic metastasis of prostate cancer and lead to misinterpretation of PSMA PET/CT findings. Additionally, it has significant management and prognostic implications. We present a rare case of an 88-year-old man with metastatic castration-resistant prostate cancer who showed a PSMA-expressing subcutaneous nodule in the scalp on 18 F-PSMA-1007 PET/CT, raising the suspicion of cutaneous metastasis. However, its biopsy revealed a neurofibroma, altering the disease prognosis and management.


Neurofibroma , Niacinamide/analogs & derivatives , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms, Castration-Resistant , Skin Neoplasms , Humans , Male , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/pathology , Aged, 80 and over , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/pathology , Diagnosis, Differential , Neurofibroma/diagnostic imaging , Oligopeptides , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Tomography, X-Ray Computed , Fluorine Radioisotopes
6.
Infect Immun ; 92(5): e0011324, 2024 May 07.
Article En | MEDLINE | ID: mdl-38624215

Malaria, one of the major infectious diseases in the world, is caused by the Plasmodium parasite. Plasmodium antigens could modulate the inflammatory response by binding to macrophage membrane receptors. As an export protein on the infected erythrocyte membrane, Plasmodium surface-related antigen (SRA) participates in the erythrocyte invasion and regulates the immune response of the host. This study found that the F2 segment of P. yoelii SRA activated downstream MAPK and NF-κB signaling pathways by binding to CD68 on the surface of the macrophage membrane and regulating the inflammatory response. The anti-PySRA-F2 antibody can protect mice against P. yoelii, and the pro-inflammatory responses such as IL-1ß, TNF-α, and IL-6 after infection with P. yoelii are attenuated. These findings will be helpful for understanding the involvement of the pathogenic mechanism of malaria with the exported protein SRA.


Antigens, CD , Antigens, Differentiation, Myelomonocytic , Macrophages , Malaria , Plasmodium yoelii , Plasmodium yoelii/immunology , Animals , Mice , Macrophages/immunology , Macrophages/metabolism , Macrophages/parasitology , Malaria/immunology , Malaria/parasitology , Antigens, CD/metabolism , Antigens, CD/immunology , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/immunology , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , Humans , Female , Antigens, Surface/immunology , Antigens, Surface/metabolism , Protein Binding , Signal Transduction , NF-kappa B/metabolism , NF-kappa B/immunology , Cell Membrane/metabolism , Cell Membrane/immunology , Inflammation/immunology , Inflammation/metabolism
7.
Clin Cancer Res ; 30(9): 1788-1800, 2024 May 01.
Article En | MEDLINE | ID: mdl-38587547

PURPOSE: Prostate-specific membrane antigen (PSMA)-based images, which visually quantify PSMA expression, are used to determine prostate cancer micrometastases. This study evaluated whether a circulating tumor cell (CTC)-based transcript platform, including PSMA mRNA, could help identify potential prognostic markers in prostate cancer. EXPERIMENTAL DESIGN: We prospectively enrolled 21 healthy individuals and 247 patients with prostate cancer [localized prostate cancer (LPCa), n = 94; metastatic hormone-sensitive prostate cancer (mHSPC), n = 44; and metastatic castration-resistant prostate cancer (mCRPC), n = 109]. The mRNA expression of six transcripts [PSMA, prostate-specific antigen (PSA), AR, AR-V7, EpCAM, and KRT 19] from CTCs was measured, and their relationship with biochemical recurrence (BCR) in LPCa and mCRPC progression-free survival (PFS) rate in mHSPC was assessed. PSA-PFS and radiological-PFS were also calculated to identify potential biomarkers for predicting androgen receptor signaling inhibitor (ARSI) and taxane-based chemotherapy resistance in mCRPC. RESULTS: CTC detection rates were 75.5%, 95.3%, and 98.0% for LPCa, mHSPC, and mCRPC, respectively. In LPCa, PSMA [hazard ratio (HR), 3.35; P = 0.028) and PSA mRNA (HR, 1.42; P = 0.047] expressions were associated with BCR. Patients with mHSPC with high PSMA (HR, 4.26; P = 0.020) and PSA mRNA (HR, 3.52; P = 0.042) expressions showed significantly worse mCRPC-PFS rates than those with low expression. Increased PSA and PSMA mRNA expressions were significantly associated with shorter PSA-PFS and radiological PFS in mCPRC, indicating an association with drug resistance. CONCLUSIONS: PSMA and PSA mRNA expressions are associated with BCR in LPCa. In advanced prostate cancer, PSMA and PSA mRNA can also predict rapid progression from mHSPC to mCRPC and ARSI or taxane-based chemotherapy resistance.


Antigens, Surface , Biomarkers, Tumor , Glutamate Carboxypeptidase II , Neoplasm Staging , Neoplastic Cells, Circulating , Prostate-Specific Antigen , Humans , Male , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Prostate-Specific Antigen/blood , Aged , Glutamate Carboxypeptidase II/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Antigens, Surface/genetics , Antigens, Surface/metabolism , Middle Aged , Prognosis , RNA, Messenger/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/blood , Prostatic Neoplasms/mortality , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/drug therapy , Aged, 80 and over , Prospective Studies , Kallikreins/blood , Kallikreins/genetics , Gene Expression Regulation, Neoplastic
8.
Bioorg Med Chem Lett ; 104: 129712, 2024 May 15.
Article En | MEDLINE | ID: mdl-38521177

We developed a model small-molecule drug conjugate (SMDC) that employed doxorubicin as a representative chemotherapeutic targeted to the cell membrane biomarker PSMA (prostate-specific membrane antigen) expressed on prostate cancer cells. The strategy capitalized on the clatherin-mediated internalization of PSMA to facilitate the selective uptake and release of doxorubicin in the target cells. The SMDC was prepared and assessed for binding kinetics, plasma stability, cell toxicity, and specificity towards PSMA expressing prostate cancer cell lines. We observed high affinity of the SMDC for PSMA (IC50 5 nM) with irreversible binding, as well as specific effectiveness against PSMA(+) cells. These findings validated the strategy for a small molecule-based approach in targeted cancer therapy.


Antigens, Surface , Prostatic Neoplasms , Male , Humans , Cell Line, Tumor , Antigens, Surface/metabolism , Glutamate Carboxypeptidase II/metabolism , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Drug Delivery Systems
9.
Cancer Sci ; 115(4): 1114-1128, 2024 Apr.
Article En | MEDLINE | ID: mdl-38332689

The direction and magnitude of immune responses are critically affected when dead cells are disposed of. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) promotes the engulfment of apoptotic normal and cancerous cells without inducing inflammation. We have previously reported that a certain proportion of the cancer cells express abundant MFG-E8, and that such expression is associated with the shorter survival of patients with esophageal cancer who had received chemotherapy before surgery. However, the influence of tumor-derived and systemically existing MFG-E8 on antitumor immune responses has not yet been fully investigated. Herein, we showed that CTL-dependent antitumor immune responses were observed in mice with no or decreased levels of systemic MFG-E8, and that such responses were enhanced further with the administration of anti-PD-1 antibody. In mice with decreased levels of systemic MFG-E8, the dominance of regulatory T cells in tumor-infiltrating lymphocytes was inverted to CD8+ T cell dominance. MFG-E8 expression by tumor cells appears to affect antitumor immune responses only when the level of systemic MFG-E8 is lower than the physiological status. We have also demonstrated in the clinical setting that lower levels of plasma MFG-E8, but not MFG-E8 expression in tumor cells, before the treatment was associated with objective responses to anti-PD-1 therapy in patients with non-small cell lung cancer. These results suggest that systemic MFG-E8 plays a critical role during the immunological initiation process of antigen-presenting cells to increase tumor-specific CTLs. Regulation of the systemic level of MFG-E8 might induce efficient antitumor immune responses and enhance the potency of anti-PD-1 therapy.


Carcinoma, Non-Small-Cell Lung , Esophageal Neoplasms , Lung Neoplasms , Animals , Humans , Mice , Antigens, Surface/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Esophageal Neoplasms/drug therapy , Inflammation/pathology , Lung Neoplasms/drug therapy , Milk Proteins/metabolism , T-Lymphocytes, Cytotoxic/metabolism
10.
J Nucl Med ; 65(4): 593-599, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38423784

The application of prostate-specific membrane antigen (PSMA)-targeted α-therapy is a promising alternative to ß--particle-based treatments. 211At is among the potential α-emitters that are favorable for this concept. Herein, 211At-based PSMA radiopharmaceuticals were designed, developed, and evaluated. Methods: To identify a 211At-labeled lead, a surrogate strategy was applied. Because astatine does not exist as a stable nuclide, it is commonly replaced with iodine to mimic the pharmacokinetic behavior of the corresponding 211At-labeled compounds. To facilitate the process of structural design, iodine-based candidates were radiolabeled with the PET radionuclide 68Ga to study their preliminary in vitro and in vivo properties before the desired 211At-labeled lead compound was formed. The most promising candidate from this evaluation was chosen to be 211At-labeled and tested in biodistribution studies. Results: All 68Ga-labeled surrogates displayed affinities in the nanomolar range and specific internalization in PSMA-positive LNCaP cells. PET imaging of these compounds identified [68Ga]PSGa-3 as the lead compound. Subsequently, [211At]PSAt-3-Ga was synthesized in a radiochemical yield of 35% and showed tumor uptake of 19 ± 8 percentage injected dose per gram of tissue (%ID/g) at 1 h after injection and 7.6 ± 2.9 %ID/g after 24 h. Uptake in off-target tissues such as the thyroid (2.0 ± 1.1 %ID/g), spleen (3.0 ± 0.6 %ID/g), or stomach (2.0 ± 0.4 %ID/g) was low, indicating low in vivo deastatination of [211At]PSAt-3-Ga. Conclusion: The reported findings support the use of iodine-based and 68Ga-labeled variants as a convenient strategy for developing astatinated compounds and confirm [211At]PSAt-3 as a promising radiopharmaceutical for targeted α-therapy.


Iodine , Prostatic Neoplasms , Male , Humans , Gallium Radioisotopes , Tissue Distribution , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/pathology , Positron-Emission Tomography/methods , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Radiopharmaceuticals/pharmacokinetics , Cell Line, Tumor
11.
BMC Cancer ; 24(1): 163, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38302933

BACKGROUND: Despite advancements in managing metastatic clear cell renal carcinoma (mccRCC) through antiangiogenic tyrosine kinase inhibitors and immunotherapy, there remains a demand for novel treatments for patients experiencing progression despite the use of these medications. There is currently no established standard treatment for patients receiving third therapy line. Prostate Specific Membrane Antigen (PSMA) whose high expression has been demonstrated in metastatic aggressive prostate adenocarcinoma is also highly expressed in neovessels of various solid tumors including renal cell carcinoma (RCC): 86% of clear cell RCC, 61% of chromophobe RCC, and 28% of papillary RCC. Therefore, PSMA may be a target expressed in metastatic ccRCC for radionuclide therapy using PSMA ligands radiolabeled with Lutetium-177 (PRLT). 177Lu-PSMA delivers ß-particle radiation to PSMA-expressing cells and the surrounding microenvironment with demonstrated efficacy in metastatic prostate cancer. METHODS: This is a multicenter phase I/II study designed to assess the tolerability and effectiveness of 177Lu-PSMA-1 in individuals with PSMA-positive metastatic clear cell renal cell carcinoma (ccRCC), identified through 68Ga-PSMA PET, conducted in France (PRadR). 48 patients will be treated with 4 cycles of 7.4 GBq of 177Lu-PSMA-1 every 6 weeks. The primary objective is to evaluate the safety of 177Lu-PSMA-1 (phase I) and the efficacy of 177Lu-PSMA-1 in mccRCC patients (phase II). Primary endpoints are incidence of Severe Toxicities (ST) occurring during the first cycle (i.e. 6 first weeks) and disease Control Rate after 24 weeks of treatment (DCR24w) as per RECIST V1.1. Secondary objective is to further document the clinical activity of 177Lu-PSMA-1 in mccRCC patients (duration of response (DoR), best overall response rate (BORR), progression fee survival (PFS) and overall survival (OS). DISCUSSION: Our prospective study may lead to new potential indications for the use of 177Lu-PSMA-1 in mccRCC patients and should confirm the efficacy and safety of this radionuclide therapy with limited adverse events. The use of 177Lu-PSMA-1may lead to increase disease control, objective response rate and the quality of life in mccRCC patients. TRIAL REGISTRATION: ClinicalTrials.gov: NCT06059014.


Antigens, Surface , Carcinoma, Renal Cell , Glutamate Carboxypeptidase II , Kidney Neoplasms , Lutetium , Radioisotopes , Radiopharmaceuticals , Humans , Male , Carcinoma, Renal Cell/radiotherapy , Carcinoma, Renal Cell/drug therapy , Dipeptides/adverse effects , Dipeptides/therapeutic use , Heterocyclic Compounds, 1-Ring/adverse effects , Heterocyclic Compounds, 1-Ring/therapeutic use , Lutetium/adverse effects , Lutetium/therapeutic use , Prospective Studies , Quality of Life , Radioisotopes/adverse effects , Radioisotopes/therapeutic use , Treatment Outcome , Tumor Microenvironment , Female , Kidney Neoplasms/drug therapy , Kidney Neoplasms/radiotherapy , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Multicenter Studies as Topic , Antigens, Surface/metabolism , Glutamate Carboxypeptidase II/antagonists & inhibitors , Radiopharmaceuticals/adverse effects , Radiopharmaceuticals/therapeutic use
12.
J Biol Chem ; 300(2): 105631, 2024 Feb.
Article En | MEDLINE | ID: mdl-38199575

Integrins are cell adhesion receptors that dimerize to mediate cell-cell interactions and regulate processes, including proliferation, inflammation, and tissue repair. The role of integrins in regulating insulin signaling is incompletely understood. We have previously shown that binding of the integrin ligand milk fat globule epidermal growth factor like 8 (MFGE8) to the αvß5 integrin promotes termination of insulin receptor signaling in mice. Upon ligation of MFGE8, integrin ß5 complexes with the insulin receptor beta (IRß) in skeletal muscle, resulting in dephosphorylation of IRß and reduction of insulin-stimulated glucose uptake. Here, we investigate the mechanism by which the interaction between ß5 and IRß impacts IRß phosphorylation status. We show in in vitro and in vivo in skeletal muscle in mice that antibody-mediated blockade of the ß5 integrin inhibits and recombinant MFGE8 promotes PTP1B binding to and dephosphorylation of IRß resulting in increased or reduced insulin-stimulated glucose uptake, respectively. The ß5-PTP1B complex is recruited by MFGE8 to IRß leading to termination of canonical insulin signaling. ß5 blockade enhances insulin-stimulated glucose uptake in wildtype but not Ptp1b KO mice indicating that PTP1B functions downstream of MFGE8 in modulating insulin receptor signaling. Furthermore, in a human cohort, we report serum MFGE8 levels correlate with indices of insulin resistance. These data provide mechanistic insights into the role of MFGE8 and ß5 in regulating insulin signaling.


Insulin , Receptor, Insulin , Animals , Humans , Mice , Antigens, Surface/metabolism , Glucose/metabolism , Insulin/metabolism , Integrin beta Chains , Milk Proteins/metabolism , Receptor, Insulin/genetics , Mice, Inbred C57BL , Male , Cell Line
13.
Mol Carcinog ; 63(4): 714-727, 2024 Apr.
Article En | MEDLINE | ID: mdl-38251858

The histone variant, macroH2A (mH2A) influences gene expression through epigenetic regulation. Tumor suppressive function of mH2A isoforms has been reported in various cancer types, but few studies have investigated the functional role of mH2A2 in breast cancer pathophysiology. This study aimed to determine the significance of mH2A2 in breast cancer development and progression by exploring its downstream regulatory mechanisms. Knockdown of mH2A2 facilitated the migration and invasion of breast cancer cells, whereas its overexpression exhibited the opposite effect. In vivo experiments revealed that augmenting mH2A2 expression reduced tumor growth and lung metastasis. Microarray analysis showed that TM4SF1 emerged as a likely target linked to mH2A2 owing to its significant suppression in breast cancer cell lines where mH2A2 was overexpressed among the genes that exhibited over twofold upregulation upon mH2A2 knockdown. Suppressing TM4SF1 reduced the migration, invasion, tumor growth, and metastasis of breast cancer cells in vitro and in vivo. TM4SF1 depletion reversed the increased aggressiveness triggered by mH2A2 knockdown, suggesting a close interplay between mH2A2 and TM4SF1. Our findings also highlight the role of the mH2A2/TM4SF1 axis in activating the AKT/NF-κB pathway. Consequently, activated NF-κB signaling leads to increased expression and secretion of MMP13, a potent promoter of metastasis. In summary, we propose that the orchestrated regulation of the mH2A2/TM4SF1 axis in conjunction with the AKT/NF-κB pathway and the subsequent elevation in MMP13 expression constitute pivotal factors governing the malignancy of breast cancer.


Breast Neoplasms , NF-kappa B , Humans , Female , NF-kappa B/genetics , NF-kappa B/metabolism , Histones/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Breast Neoplasms/metabolism , Epigenesis, Genetic , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Neoplasm Proteins/genetics , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation/physiology , Antigens, Surface/genetics , Antigens, Surface/metabolism
15.
Eur J Nucl Med Mol Imaging ; 51(6): 1753-1762, 2024 May.
Article En | MEDLINE | ID: mdl-38212531

PURPOSE: This is a first-in-human study to evaluate the radiation dosimetry of a new prostate-specific membrane antigen (PSMA)-targeted radiopharmaceutical, [18F]AlF-P16-093, and also initial investigation of its ability to detect PSMA-positive tumors using PET scans in a cohort of prostate cancer (PCa) patients. METHODS: The [18F]AlF-P16-093 was automatically synthesized with a GE TRACERlab. A total of 23 patients with histopathologically proven PCa were prospectively enrolled. Dosimetry and biodistribution study investigations were carried out on a subset of six (6) PCa patients, involving multiple time-point scanning. The mean absorbed doses were estimated with PMOD and OLINDA software. RESULTS: [18F]AlF-P16-093 was successfully synthesized, and radiochemical purity was > 95%, and average labeling yield was 36.5 ± 8.3% (decay correction, n = 12). The highest tracer uptake was observed in the kidneys, spleen, and liver, contributing to an effective dose of 16.8 ± 1.3 µSv/MBq, which was ~ 30% lower than that of [68Ga]Ga-P16-093. All subjects tolerated the PET examination well, and no reportable side-effects were observed. The PSMA-positive tumors displayed rapid uptake, and they were all detectable within 10 min, and no additional lesions were observed in the following multi-time points scanning. Each patient had at least one detectable tumor lesion, and a total of 356 tumor lesions were observed, including intraprostatic, lymph node metastases, bone metastases, and other soft tissue metastases. CONCLUSIONS: We report herein a streamlined method for high yield synthesis of [18F]AlF-P16-093. Preliminary study in PCa patients has demonstrated its safety and acceptable radiation dosimetry. The initial diagnostic study indicated that [18F]AlF-P16-093 PET/CT is efficacious and potentially useful for a widespread application in the diagnosis of PCa patients.


Antigens, Surface , Glutamate Carboxypeptidase II , Prostatic Neoplasms , Radiometry , Humans , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Aged , Glutamate Carboxypeptidase II/metabolism , Middle Aged , Antigens, Surface/metabolism , Tissue Distribution , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemistry , Fluorine Radioisotopes/chemistry , Aged, 80 and over , Positron Emission Tomography Computed Tomography
16.
Mol Pharm ; 21(2): 822-830, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38173242

Titanium-45 (45Ti) is a radionuclide with excellent physical characteristics for use in positron emission tomography (PET) imaging, including a moderate half-life (3.08 h), decay by positron emission (85%), and a low mean positron energy of 0.439 MeV. However, challenges associated with titanium chemistry have led to the underdevelopment of this radionuclide for incorporation into radiopharmaceuticals. Expanding on our recent studies, which showed promising results for the complexation of 45Ti with the tris hydroxypyridinone (THPMe) chelator, the current work aimed to optimize the chemistry and imaging attributes of [45Ti]Ti-THP-PSMA as a new PET radiopharmaceutical. Methods. Radiolabeling of THP-PSMA was optimized with [45Ti]Ti-citrate at varying pHs and masses of the precursor. The stability of the radiolabeled complex was assessed in mouse serum for up to 6 h. The affinity of [45Ti]Ti-THP-PSMA for prostate-specific membrane antigen (PSMA) was assessed using LNCaP (PSMA +) and PC3 (PSMA -) cell lines. In vivo imaging and biodistribution analysis were performed in tumor-bearing xenograft mouse models to confirm the specificity of the tumor uptake. Results. > 95% of radiolabeling was achieved with a high specific activity of 5.6 MBq/nmol under mild conditions. In vitro cell binding studies showed significant binding of the radiolabeled complex with the PSMA-expressing LNCaP cell line (11.9 ± 1.5%/mg protein-bound activity) compared to that with the nonexpressing PC3 cells (1.9 ± 0.4%/mg protein-bound activity). In vivo imaging and biodistribution studies confirmed specific uptake in LNCaP tumors (1.6 ± 0.27% ID/g) compared to that in PC3 tumors (0.39 ± 0.2% ID/g). Conclusion. This study showed a simple one-step radiolabeling method for 45Ti with THP-PSMA under mild conditions (pH 8 and 37 °C). In vitro cell studies showed promise, but in vivo tumor xenograft studies indicated low tumor uptake. Overall, this study shows the need for more chelators for 45Ti for the development of a PET radiopharmaceutical for cancer imaging.


Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Male , Humans , Animals , Mice , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals , Prostatic Neoplasms/metabolism , Radiochemistry , Tissue Distribution , Titanium , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Positron-Emission Tomography , Radioisotopes , Chelating Agents , Cell Line, Tumor
17.
J Leukoc Biol ; 115(2): 385-400, 2024 01 19.
Article En | MEDLINE | ID: mdl-37774691

Sepsis is a life-threatening inflammatory condition partly orchestrated by the release of various damage-associated molecular patterns such as extracellular cold-inducible RNA-binding protein (eCIRP). Despite advances in understanding the pathogenic role of eCIRP in inflammatory diseases, novel therapeutic strategies to prevent its excessive inflammatory response are lacking. Milk fat globule-epidermal growth factor-VIII (MFG-E8) is critical for the opsonic clearance of apoptotic cells, but its potential involvement in the removal of eCIRP was previously unknown. Here, we report that MFG-E8 can strongly bind eCIRP to facilitate αvß3-integrin-dependent internalization and lysosome-dependent degradation of MFG-E8/eCIRP complexes, thereby attenuating excessive inflammation. Genetic disruption of MFG-E8 expression exaggerated sepsis-induced systemic accumulation of eCIRP and other cytokines, and consequently exacerbated sepsis-associated acute lung injury. In contrast, MFG-E8-derived oligopeptide recapitulated its eCIRP binding properties, and significantly attenuated eCIRP-induced inflammation to confer protection against sepsis. Our findings suggest a novel therapeutic approach to attenuate eCIRP-induced inflammation to improve outcomes of lethal sepsis.


Acute Lung Injury , Sepsis , Humans , Sepsis/drug therapy , Sepsis/pathology , Inflammation/drug therapy , Acute Lung Injury/drug therapy , Milk Proteins/genetics , Milk Proteins/metabolism , Milk Proteins/pharmacology , Antigens, Surface/metabolism
18.
Mol Pharm ; 21(1): 216-233, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37992229

Nuclear DNA is the canonical target for biological damage induced by Auger electrons (AE) in the context of targeted radionuclide therapy (TRT) of cancer, but other subcellular components might also be relevant for this purpose, such as the energized mitochondria of tumor cells. Having this in mind, we have synthesized novel DOTA-based chelators carrying a prostate-specific membrane antigen (PSMA) inhibitor and a triphenyl phosphonium (TPP) group that were used to obtain dual-targeted 111In-radioconjugates ([111In]In-TPP-DOTAGA-PSMA and [111In]In-TPP-DOTAGA-G3-PSMA), aiming to promote a selective uptake of an AE-emitter radiometal (111In) by PSMA+ prostate cancer (PCa) cells and an enhanced accumulation in the mitochondria. These dual-targeted 111In-radiocomplexes are highly stable under physiological conditions and in cell culture media. The complexes showed relatively similar binding affinities toward the PSMA compared to the reference tracer [111In]In-PSMA-617, in line with their high cellular uptake and internalization in PSMA+ PCa cells. The complexes compromised cell survival in a dose-dependent manner and in the case of [111In]In-TPP-DOTAGA-G3-PSMA to a higher extent than observed for the single-targeted congener [111In]In-PSMA-617. µSPECT imaging studies in PSMA+ PCa xenografts showed that the TPP pharmacophore did not interfere with the excellent in vivo tumor uptake of the "golden standard" [111In]In-PSMA-617, although it led to a higher kidney retention. Such kidney retention does not necessarily compromise their usefulness as radiotherapeutics due to the short tissue range of the Auger/conversion electrons emitted by 111In. Overall, our results provide valuable insights into the potential use of mitochondrial targeting by PSMA-based radiocomplexes for efficient use of AE-emitting radionuclides in TRT, giving impetus to extend the studies to other AE-emitting trivalent radiometals (e.g., 161Tb or 165Er) and to further optimize the designed dual-targeting constructs.


Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/metabolism , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Radioisotopes , Radiopharmaceuticals , Mitochondria/metabolism , Cell Line, Tumor
19.
Eur J Nucl Med Mol Imaging ; 51(3): 669-680, 2024 Feb.
Article En | MEDLINE | ID: mdl-37882848

PURPOSE: PSMA (prostate-specific membrane antigen) is highly expressed on prostate cancer (PrCa) cells and extensively used as a homing target for PrCa treatment. Most prominently, PSMA-targeting conjugate PSMA-617, carrying a DOTA chelator and labeled with therapeutic radionuclides like beta-emitting lutetium-177 or alpha-emitting actinium-225, has shown clinical activity in PrCa patients. We sought to develop PSMA-targeting small molecule (SMOL) conjugates that show high uptake in PSMA-expressing tumors and fast clearance, and can easily be labeled with the alpha emitter thorium-227 (half-life 18.7 days). METHODS: A novel linker motif with improved competition against 3H-PSMA-617 on PSMA-expressing LNCaP cells was identified. A 2,3-hydroxypyridinone chelator modified with carboxyl groups (carboxy-HOPO) with increased hydrophilicity and robust labeling with thorium-227 was developed and allowed the synthesis of mono-, di-, tri-, and tetrameric conjugates. The resulting monomeric and multimeric PSMA SMOL-TTCs (targeted thorium conjugate) were evaluated for cellular binding, internalization, and antiproliferative activity. The in vivo antitumor efficacy of the PSMA SMOL-TTCs was determined in ST1273 and KUCaP-1 PrCa models in mice, and their biodistribution was assessed in cynomolgus monkeys, minipigs, and mice. RESULTS: The monomeric and multimeric PSMA SMOL conjugates were readily labeled with thorium-227 at room temperature and possessed high stability and good binding, internalization, and antiproliferative activity in vitro. In vivo, the monomeric, dimeric, and trimeric PSMA SMOL-TTCs showed fast clearance, potent antitumor efficacy, and high uptake and retention in prostate tumors in mice. No major uptake or retention in other organs was observed beyond kidneys. Low uptake of free thorium-227 into bone confirmed high complex stability in vivo. Salivary gland uptake remained inconclusive as mini pigs were devalidated as a relevant model and imaging controls failed in cynomolgus monkeys. CONCLUSION: Monomeric and multimeric PSMA SMOL-TTCs show high tumor uptake and fast clearance in preclinical models and warrant further therapeutic exploration.


Prostatic Neoplasms , Thorium , Male , Humans , Animals , Mice , Swine , Tissue Distribution , Macaca fascicularis/metabolism , Swine, Miniature/metabolism , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Radiopharmaceuticals , Chelating Agents/chemistry , Cell Line, Tumor
20.
Stem Cell Reports ; 19(1): 1-10, 2024 01 09.
Article En | MEDLINE | ID: mdl-38157849

The expression of one or more of a small number of molecules, typically cell surface-associated antigens, or transcription factors, is widely used for identifying pluripotent stem cells (PSCs) or for monitoring their differentiation. However, none of these marker molecules are uniquely expressed by PSCs and all are expressed by stem cells that have lost the ability to differentiate. Consequently, none are indicators of pluripotency, per se. Here we summarize the nature and characteristics of several markers that are in wide use, including the cell surface antigens, stage-specific embryonic antigen (SSEA)-1, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, GCTM2, and the transcription factors POUF5/OCT4, NANOG, and SOX2, highlighting issues that must be considered when interpreting data about their expression on putative PSCs.


Pluripotent Stem Cells , Pluripotent Stem Cells/metabolism , Lewis X Antigen/metabolism , Cell Differentiation , Transcription Factors/genetics , Antigens, Surface/metabolism , Octamer Transcription Factor-3/metabolism
...